CMPT 353 Lecture Notes

  1. Course Introduction [“Course Introduction” slides]
    1. This Course [This Course slides]
    2. Offering Strategy [Offering Strategy slides]
    3. Grades [Grades slides]
    4. Exercises [Exercises slides]
    5. Project [Project slides]
    6. Quizzes/Exam [Quizzes/Exam slides]
    7. Us [Us slides]
    8. Lectures and Labs [Lectures and Labs slides]
    9. References [References slides]
    10. Programming [Programming slides]
    11. Expectations [Expectations slides]
    12. Computational Data Science? [Computational Data Science? slides]
    13. Data Science? [Data Science? slides]
    14. Why Data Science? [Why Data Science? slides]
    15. Topics (1) [Topics (1) slides]
  2. Data Analysis Pipeline [“Data Analysis Pipeline” slides]
    1. Your Question [Your Question slides]
    2. Getting Data [Getting Data slides]
    3. Preparing Data [Preparing Data slides]
    4. Analyzing Data [Analyzing Data slides]
    5. Presenting Results [Presenting Results slides]
    6. Creating a Pipeline [Creating a Pipeline slides]
    7. Manual Pipeline Steps [Manual Pipeline Steps slides]
    8. The Pipeline [The Pipeline slides]
  3. Data In Python [“Data In Python” slides]
    1. Built-In Data Structures [Built-In Data Structures slides]
    2. NumPy [NumPy slides]
    3. Operating on Arrays [Operating on Arrays slides]
    4. Pandas [Pandas slides]
    5. Working With Pandas [Working With Pandas slides]
  4. Getting Data [“Getting Data” slides]
    1. Where Data Comes From [Where Data Comes From slides]
    2. Data from Files [Data from Files slides]
    3. Databases [Databases slides]
    4. Web APIs [Web APIs slides]
    5. Scraping HTML [Scraping HTML slides]
    6. File Formats [File Formats slides]
    7. CSV [CSV slides]
    8. JSON [JSON slides]
    9. XML [XML slides]
    10. Others [Others slides]
  5. Extract-Transform-Load [“Extract-Transform-Load” slides]
    1. Extract [Extract slides]
    2. Transform [Transform slides]
    3. Load [Load slides]
    4. Summary [Summary slides]
  6. Noise Filtering [“Noise Filtering” slides]
    1. Noise [Noise slides]
    2. LOESS Smoothing [LOESS Smoothing slides]
    3. LOESS in Python [LOESS in Python slides]
    4. Kalman Filtering [Kalman Filtering slides]
    5. Probability Distributions [Probability Distributions slides]
    6. Kalman Operation [Kalman Operation slides]
    7. Kalman Predictions [Kalman Predictions slides]
    8. Kalman Variances [Kalman Variances slides]
    9. pykalman [pykalman slides]
    10. Kalman Example [Kalman Example slides]
    11. Kalman Parameters [Kalman Parameters slides]
    12. Kalman Summary [Kalman Summary slides]
    13. Kalman Links [Kalman Links slides]
    14. Other Filtering [Other Filtering slides]
  7. Cleaning Data [“Cleaning Data” slides]
    1. Validity [Validity slides]
    2. Outliers [Outliers slides]
    3. Finding Outliers [Finding Outliers slides]
    4. Handling Outliers [Handling Outliers slides]
    5. Imputation [Imputation slides]
    6. Noise Filtering [Noise Filtering slides]
    7. Entity Resolution [Entity Resolution slides]
    8. Regular Expressions [Regular Expressions slides]
    9. Python re [Python re slides]
    10. Regex Summary [Regex Summary slides]
  8. Stats Review [“Stats Review” slides]
    1. Context [Context slides]
    2. Types of Data [Types of Data slides]
    3. Population and Samples [Population and Samples slides]
    4. Probability Distributions [Probability Distributions slides]
    5. Central Tendancy [Central Tendancy slides]
    6. Dispersion [Dispersion slides]
    7. Relationships [Relationships slides]
    8. Plotting Data [Plotting Data slides]
    9. Specific Distributions [Specific Distributions slides]
    10. Normal Distribution [Normal Distribution slides]
  9. Inferential Stats [“Inferential Stats” slides]
    1. Hypotheses [Hypotheses slides]
    2. T-Test [T-Test slides]
    3. p-values [p-values slides]
    4. Failure to Reject [Failure to Reject slides]
    5. Test Assumptions [Test Assumptions slides]
    6. Testing Normality [Testing Normality slides]
    7. Equal Variance Test [Equal Variance Test slides]
    8. Transforming Data [Transforming Data slides]
  10. Statistical Tests
  11. Machine Learning
  12. ML: Classification
  13. ML: Other Techniques
  14. Big Data and Spark
  15. How Spark Calculates
  16. Working With Spark
  17. Other DataFrame Tools
  18. Aside: NumPy/Pandas Speed
  19. Communicating
  20. More Data Science

Course home page.

Schedule, Fall 2024

Week Deliverables (*) Lecture Hour Lecture Date First Slide Video Link
1 1 Sep 4
2 Exer 1 2 Sep 9
3 Sep 9
4 Sep 11
3 Exer 2 5 Sep 16
6 Sep 16
7 Sep 18
4 Exer 3 8 Sep 23
9 Sep 23
10 Sep 25
5 Exer 4 11 Sep 30
12 Sep 30
13 Oct 2
6 Exer 5 14 Oct 7
15 Oct 7
16 Oct 9
7 Exer 6, Quiz 1 17 Oct 15
18 Oct 15
19 Oct 16
8 Exer 7 20 Oct 21
21 Oct 21
22 Oct 23
9 Exer 8 23 Oct 28
24 Oct 28
25 Oct 30
10 Exer 9 26 Nov 4
27 Nov 4
28 Nov 6
11 Exer 10, Quiz 2 29 Nov 11
30 Nov 11
31 Nov 13
12 Exer 11 32 Nov 18
33 Nov 18
34 Nov 20
13 Exer 12 35 Nov 25
36 Nov 25
37 Nov 27
14+ Project, Final Quiz 38 Dec 2
39 Dec 2

* Check CourSys for the actual due dates and times.

Quiz instruction slide.