It's Computational Data Science
. We'll come back to what that is.
Course web site: in CourSys, https://coursys.sfu.ca/2024fa-cmpt-353-d1/pages/
.
Whoever you are, I'm glad you're here.
My plan is to keep the parts of this course that worked best in-person pre-pandemic, and the parts that worked best online. Basically:
Lectures will be pre-recorded.
In the lecture time, they will be available as a YouTube Premier
(≈ watch party) in ≈50 minute chunks. Greg will be available in YouTube chat to answer questions during that time.
They will be available as regular YouTube videos for viewing later.
Late penalty: 20%/day.
Due Fridays. My goal: make sure you actually try out the things we have talked about and see the reality of applying them.
Will contain some short problems to get you used to the tools, expanding to something a more interesting real
problem.
Late penalty: 20%/day.
In the lectures/exercises, I intend to explore what I consider the core
of data science.
The project will let you integrate those techniques, and explore ideas on the edges of that, depending what interests you.
I will post project topic ideas that are intended as starting points for your thinking about a project (not as ready-to-go project topics).
We can discuss project ideas in the lab or discussion forum.
A few details:
Quizzes: 10% each, in-person. Dates may change if necessary, but planned during lecture times:
Final Quiz: whenever our final exam
is scheduled.
All closed book, on paper. Missing/excusing exams requires medical documentation.
Instructor: Greg Baker <[email protected]>.
Office hour: Tuesdays and Thursdays 11:00–12:00 in CSIL (ASB 9838 9804).
TAs: to be announced.
Office hours: details later.
Greg's honest order of priority when dealing with student queries:
Mondays: lectures
premier as scheduled, live chat. Regular YouTube videos after that.
Wednesdays: usually no lectures
. The TAs and I will all be available for consultation during the lecture time in CSIL (ASB 9838 9804+9840).
Textbooks: none.
Possible reference material:
Possible reference material (continued):
Python 3 will be the primary programming language language used in the course. If you aren't comfortable with it, you need to be (very) soon.
StackExchange Data Science tags (as of April 2023):
Language | Tagged Qs |
---|---|
Python | 6613 |
R | 1478 |
Matlab | 156 |
Java | 58 |
Scala | 48 |
This will be a programming-heavy course. If you don't really like programming, this might not be the course for you.
The programming style will be very library-heavy, which is realistic in the modern world. We will use many libraries: NumPy, Pandas, matplotlib, scikit-learn, statsmodels, ….
That means you'll spend a lot of time reading the docs and fighting to make the tools do what you want them to, and less implementing the logic yourself. That's also realistic.
The code you would have written would almost certainly have been slower and worse.
I will feel free to increase the amount of assignment work a little from my usual level because of the missing
hour of lecture.
To get credit for this course, I expect you to demonstrate that you know how to use programming techniques to manipulate and analyse data. That means:
Failure to do these may result in failing the course.
That rule isn't intended to fail someone just because they get 49% on the exams: it will be applied on an individual basis with a judgement call on the question has this student has demonstrated that they understand the basic concepts of the course?
Academic Honesty: it's important, as always.
If you're using an online source, leave a comment.
def this_function(p1, p2): # adapted from http://stackoverflow.com/a/21623206/1236542 ...
That's all I ask, but remember to do it.
You are expected to do the work in this course yourself (or as a group for the project). Whenever you submit any work at the University, you're implicitly certifying this is my own independent work
.
Examples of things that are not okay and will be treated as academic dishonesty:
The quizzes are regular tests: individual work, closed book.
I will be asking for a grade of FD in the course for any academic dishonesty on quizzes.
Computational Data Science
: data science, but with computation as the focus.
But what is data science?
According to Wikipedia: an interdisciplinary academic field that uses… [various disciplines] to extract or extrapolate knowledge and insights from… data.
According to Pat Hanrahan, Tableau Software: [The combination of] business knowledge, analytical skills, and computer science.
According to Daniel Tunkelang, LinkedIn: [The ability to] obtain, scrub, explore, model and interpret data, blending hacking, statistics and machine learning.
According to Joel Grus: There's a joke that says a data scientist is someone who knows more statistics than a computer scientist and more computer science than a statistician.… We'll says that a data scientist is someone who extracts insights from messy data.
According to Drew Conway, Alluvium:
My definitions:
Why is data science
so popular? Is it new?
There's more data being collected: web access logs, purchase history, click-through rates, location history, sensor data, ….
Sometimes the volume of data is big: too big to manage easily. That's where big data
starts.
People want answers/insights from that data: Is the marketing campaign working? Is the UI actually usable? What if we did X instead of Y?
New techniques: Machine learning lets us attack questions that were previously unanswerable. Computer scientists are realizing that statistics is important; statisticians are realizing that computer science is important.
where do we find data?
it turns out that stats course was useful.
it's like AI, except it works.